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ABSTRACT

Analysis and architecture design of the key modules in 
JPEG2000 are presented in this paper. For Discrete Wavelet 
Transform (DWT), a lifting based DWT core for the default 5-3 
and 9-7 filters in part I of JPEG2000 is proposed. Folded 
architecture is adopted in DWT to reduce the hardware cost and 
to achieve the higher hardware utilization. For Embedded Block 
Coding with Optimized Truncation (EBCOT), column-based 
coding architecture of Tier-1 block coding engine is proposed. 
The context formation efficiency is increased by adopting two 
speedup methods. The computation cycle of the block coding 
engine is reduced to about 40% of previous work. 

1. INTRODUCTION

JPEG2000 [1] is an emerging next-generation still image 
compression standard. It is designed to provide not only better 
compression performance than the existing JPEG standard [2], 
but also new features and functionalities unavailable in JPEG. 
The applications of JPEG2000 includes the digital still camera,  
internet and wireless transmission. Different from JPEG, 
JPEG2000 uses DWT as the transform coder, and EBCOT [3] as 
the entropy coder. Fig. 1 compares the functional block diagram 
of JPEG and JPEG2000. Wavelet transform is a subband 
transform. It transfers the whole image, instead of 8x8 blocks in 
JPEG, from spatial domain to frequency domain. To achieve 
efficient lossy and lossless compression within a single coding 
architecture, two wavelet transform kernels are supported in part 
one of JPEG2000. The 5-3 reversible and 9-7 irreversible filters 
are chosen for lossless and lossy compression, respectively. After 
wavelet transform, the coefficients are scalar quantized if lossy 
compression is chosen. Then, coefficients are entropy coded by 
EBCOT. EBCOT is a two-Tier coder. Tier-1 is a context based 
arithmetic encoder, and Tier-2 forms the bitstream according to 
the rate-distortion information. Different from Huffman coding, 
which can be implemented by  table look-up, the implementation 
complexity of the adaptive arithmetic coder is much higher. In 
single pass JPEG coding, the compression ratio can not be 
accurately controlled. In JPEG2000, EBCOT Tier-2 can reorder 
the sub-bitstream segments contributed from each code-block 
according to the rate-distortion optimization criteria, and generate 
an JPEG2000 bit-stream with embedded characteristics. 
Therefore, the compression ratio can be accurately controlled by 
users, and the bitstream can be progressively decoded. 

Since JPEG2000 is a brand-new standard, researchers are still 
working hard to find the optimized design. Software companies 
have provided their JPEG2000 codec, and kept promoting the 
adoption of this new standard. As for the hardware design, ADV-
JP2000 [4] is claimed to be the first commercial chip to support 
the JPEG2000 compression. It is designed to be a JPEG2000 co-
processor. DWT and EBCOT Tier-1 are implemented in this chip, 
and EBCOT Tier-2 is executed on the host PC or extra processor. 

Other researchers are trying another solutions such as DSP, 
FPGA and ASIC implementations. As we can see in the run time 
profile of JPEG 2000 in Table 1, EBCOT Tier-1 (context-based 
arithmetic encoding) is the most time consuming module, and 
DWT is the second one. In this paper, we mainly focus on the 
analysis of DWT and EBCOT Tier-1, and then propose 
architectures for these two parts. 

The rest of this paper is organized as follows. In Section 2, 
the algorithm of lifting based DWT and its architecture design 
are discussed. In Section 3, the algorithm of EBCOT Tier-1 is 
detailed analyzed, and speedup schemes for the context 
formation are proposed. The experimental results and chip 
implementation of EBCOT Tier-1 are depicted in Section 4. 
Finally, a conclusion is given in Section 5. 
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Fig. 1 Functional block diagrams: comparisons of JPEG 
and JPEG2000 encoder.  

Table 1 Run time profile of JPEG2000 encoder 
(1,792x1,200 images, 5-level DWT, 9-7 filter, single layer, 
profiling platform: PentiumIII-733, 128MB RAM, Visual 
C++ and Windows ME) 

Lossless Lossy Lossless Lossy
  Color Transform 0.91 14.12
  Wavelet Transform 10.81 26.38 11.9 23.97
  Quantization 6.42 5.04
  EBCOT Block Coding 71.63 52.26 69.29 43.85
            context formation 51.88 37.91 49.96 31.79
            arithmetic encoder 19.75 14.35 19.33 12.06
  EBCOT R-D Optimization 17.56 14.95 17.9 13.01
            layer formation 10 9.52 9.94 7.95
            marker insertion 7.56 5.43 7.96 5.06

Operation
Single Component 3 Components(RGB)

2. DISCRETE WAVELET TRANSFORM

2.1 Lifting-based Discrete Wavelet Transform 

JPEG2000 is designed to support lossy and lossless 
compression within the same coding framework. Therefore, a 
compact architecture for both 5-3 and 9-7 filters is necessary. 
Different from convolution based implementations, the newly 
proposed lifting-scheme [5][6] for the computation of 5-3 and 9-
7 filters has lower computational complexity than the classical 
one. There are some other significant features of lifting scheme. 
First, lifting scheme allows in-place computation of the wavelet 
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transform. The original signal can be replaced with the calculated 
wavelet transform coefficient. Second, no explicit boundary 
extension is needed. The symmetry mirroring is achieved by 
adjusting some coefficients at proper boundary positions. 

2.2 Architecture Design of DWT 

More and more lifting-based DWT architectures are proposed 
[7]-[9]. The basic processing unit for lifting scheme is shown in 
Fig. 2. Using one basic processing unit for prediction and another 
one for update forms one stage prediction and update functions. 
For 5-3 filter, there is only one stage of prediction and update. 
However, in 9-7 filter, there are two stages. In [9], for 5-3 filter, 
the extra layer is bypassed by setting the redundant lifting 
coefficients of extra layers to zero. 

a

c

b

m

m

b + (a+c) x m

Fig. 2 Basic processing unit for lifting scheme 

Another considerations are the input data rate. For low cost 
considerations, the folded architecture, as shown in Fig. 3, is 
proposed [10] under the assumption that only single read port 
and write port memory is available, and only single-phase clock 
signal is used for the system. Input data are read from memory 
one by one. After serial to parallel conversion, data are processed 
in pairs. The second stage of 9-7 filter operation is folded onto 
the same hardware. Stage 1 and stage 2 operations are 
interleaving. An extreme alternative is that the number of inputs 
are equal to the width or length of the images. This idea can be 
found in a RAM based implementation. There is always a trade-
off between area and speed. The architecture design of DWT 
highly depends on the design of EBCOT since it is the bottleneck 
of the JPEG2000 system. A word in DWT is just one datum, but 
a N-bit datum becomes N data to be processed in EBCOT. 
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Fig. 3 Proposed folded architecture for both 5-3 and 9-7 
filters 

As for the extension of 1-D DWT core to 2-D DWT, the 
proposed 1-D DWT core can be used in the separable 2-D DWT 
implementation, and the line based [11] data flow is a feasible 
solution. The row and column filtering operations are 
interleaving, and the column filtering operations are executed as 
soon as possible. However, since EBCOT is not a line based 
entropy coder, a buffer is always necessary for the line scan to 
code-block scan conversion between DWT and EBCOT. The 
buffer size will depend on the code-block size, more specifically, 
the code-block height, and the maximum image width. 

3. EBCOT TIER-1: BLOCK CODING

3.1 EBCOT Tier-1 Algorithm and Analysis 

EBCOT is a two-tier coder. Tier-1 is an adaptive context-
based arithmetic encoder, and Tier-2 is for bitstream formation 
according to the rate-distortion information from Tier-1. The 
input to EBCOT Tier-1 is code-block by code-block. The data in 
each code-block are arithmetic encoded to be a sub-bitstream. 
This is the reason EBCOT Tier-1 is called a block coding engine. 
The block coding engine can be viewed as two parts, Context 
Formation (CF) and Arithmetic Encoder (AE). CF scans all bits 
in code block in a specific order, and generates contexts for each 
bit. AE encodes each bit according to contexts generated by CF. 
The block coder is found to be the bottleneck of JPEG2000. The 
reason comes from the fact that EBCOT process the data bit-by-
bit. The bit-level processing characteristics make it very 
inefficient to be implemented on a general processor.  

EBCOT encodes the quantized wavelet coefficients bitplane 
by bitplane from MSB to LSB. The wavelet coefficients are 
converted to sign-magnitude format after quantization. Due to the 
consideration of compression performance, every bit-plane is 
further decomposed into three passes. Each bit in a bit-plane is 
encoded in one of the 3 passes, and the criterion is the expected 
importance of this bit. Fig. 4 shows the decision flow. Pass 1 is 
Significant Propagation Pass. Those bits having at least one 
significant neighbor are coded in this pass. They are viewed as 
more important bits, and are sent first. Pass 2 is Magnitude 
Refinement Pass. All significant samples are coded in this pass. 
The last pass is Clean Up Pass. Samples not coded in first two 
passes are encoded in this one. At the beginning, the first bits of 
all samples are always coded in pass 3. Once a sample becomes 
significant, all the following bits of this sample will be coded in 
pass 2. Another situation is that the sample itself has not been 
significant yet, but at least one neighbor has been significant. 
Then, this bit is to be coded in pass 1. After the sample itself 
becomes significant, it is then coded in pass 2. Fig. 5 illustrated 
the revolution map. 

Check a bit of a pixel

is current pixel
significant ?

Coded in
pass 2

 have significant
neighbor(s)?

Coded in
pass 1

Coded in
pass 3

Yes

No

Yes

No

Fig. 4 Flow chart of the checking to determine in which 
pass this bit should be coded 

According to this algorithm and the statistical data shown in 
Fig. 6, it can be found that the distribution is not uniform. At the 
beginning, most bits in a bit-plane belong to pass 3. After coding 
several bit-planes, more and more bits are coded in pass 2 since 
samples become significant at later bit-planes as long as the 
magnitude of this sample is not zero. The number of bits in pass 
1 increases temporarily and then decrease. It is expected that the 
bits to be coded in pass 2 in the earlier bit-planes and those in 
pass 3 in later bit-planes are sparse. Since the arithmetic encoder 
in the block coding engine is the bottleneck, the CF should 
continuously feed data to AE in order to increase the throughput. 
A sequential checking of every bit in a bit-plane in every pass 
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will waste much time and have lots of “bubbles.” The worst case 
is that every bit has to be checked for three times. Speedup 
schemes are therefore  necessary for the context formation. 
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Fig. 5 Revolution map of the bits in a sample 
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Fig. 6 The distribution of number of bits coded in the 3 
passes (A 8x8 LL subband from 256x256 Lena image) 

3.2 Design of the Block Coding Engine 

Column-based architecture for context formation is proposed 
to check four bits in a column simultaneously. As for the 
arithmetic encoder, pipeline and look-ahead scheme are adopted 
to enhance the performance. Our strategy to speedup the block 
coder is to reduce the time required to check the samples in 
context formation. To achieve this, we have to keep processing 
NBC (Need-to-Be-Coded) samples, and skip no-operation 
samples.  

The design of context formation is to support input data to 
the arithmetic encoder as continuously as possible. Data are 
supplied to the context formation processing elements (PEs) one 
column (four bits) at a time. There are two advantages of 
column-based operation. First, samples in a column can be 
checked simultaneously, so speedup methods proposed can be 
applied. Second, higher data reuse in significant and sign 
variables is achieved. Memory access frequency of these 
variables can therefore be reduced. Based on column-based 
operation, the two speedup methods are described below.  

1) Sample Skipping (SS): By column-based coding, samples 
in a column can be parallel checked to see if they are Need-
to-Be-Coded (NBC) samples. NBC samples are processed 
directly and sequentially, while no-operation bits are skipped. 

2) Group-Of-Column Skipping (GOCS): In some bit-planes, 
successive columns without any NBC bits are possible. To 
further improve processing speed, these no-operation 
columns should be skipped. Due to the significant 
propagation in pass 1, we cannot decide whether one column 
is a no-operation column before previous neighboring 
column is coded. Therefore, columns in pass 1 have to check 
one by one. After coding pass 1, all NBC columns of pass 2 
and pass 3 are decided. By grouping some columns together, 
this group of columns can be skipped if there is not any NBC 
bits in it. According to the simulation, eight columns grouped 
together has the better performance. A small overhead is the 
memory needed for the storage of the GOC-skip-or-not 

information for pass 2 and pass 3. For a 64 by 64 code-block, 
the memory size is 256 bits for the two passes. 

One extreme case is happened when there is not any NBC 
bits in the whole pass. Once all the samples are significant, all 
the following bits are to be coded in pass 2. Pass 1 an Pass 3 , 
therefore, contain zero bits. Another situation is that once there is 
not any NBC bits in pass 3, the following bit-planes of pass 3 
will no longer contain any bits. The idea can be implemented 
using two flags to record the two kinds of status. 
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Fig. 7 Context formation block diagram 

The block diagram of Tier-1 context formation is shown in 
Fig. 7. Quantized wavelet coefficients are loaded once a code- 
block from Frame Memory into Code Block Memory. The sign 
bit-plane is separated from the magnitude bit-planes. This code-
block memory is necessary since every samples have to be 
accessed for many times. Contexts corresponding to every single 
bit are generated, which are the information needed for the 
adaptive arithmetic encoder. State Variable Memories are used 
for storing three different kinds of state variables (for magnitude 
refinement, final, and significant status) necessary for context 
generation. State variables needed are then loaded into State 
Variable Register, and are written back to State Variable 
Memories whenever updated. Not only state variables 
corresponding to the current coding sample, but also significant 
situations (H, V, D) of neighboring columns sent to PEs. Sign 
Magnitude Register works similar to State Variable Register
expect no update operation is needed. The four PEs 
corresponding to the four coding primitives, Zero Coding, Run-
Length Coding, Sign Coding, and Magnitude Refinement Coding, 
can generate contexts according to the state variables, sign and 
magnitude. Three Pass Controllers are used to control the four 
coding PEs. 

4. EXPERIMENTAL RESULTS

Experiments of the block coding engine are made by 
encoding various images on our proposed architecture and 
Taubman’s [12] for comparison. The processing time of EBCOT 
block coder is shown in Fig. 8. It is clear that the run time 
performance improved dramatically. Under the circumstances 
that only GOCS is applied, the processing time is reduced to 77% 
compared with Taubman’s architecture. If only SS is applied, 
process time is reduced to 45%. By using SS and GOCS together, 
processing time can be further reduced to 40%. Through the 
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simulation on various images, about 60% of improvement is 
achieved in all cases when SS and GOCS are applied together. 

149

Pass1 Pass2 Pass3

Taubman’s

SS

473  (100%)149 175

149 84 135 368  (77.8%)GOCS

81 53 79 213  (45.0%)

81 38 71 190  (40.2%)GOCS+SS
Clock Cycle Count

( x 10000 )

Fig. 8 Performance comparisons (clock cycles required) 

A prototype chip of the block coding engine is implemented 
to verify the proposed speedup schemes. The specification of this 
chip is shown in Table 3. Simulation results show that this block 
coding engine can process 4.6 million pixels image within 1 
second, corresponding to 2,400x1,800 image size, or 452x340 
video sequence with 30 frames per second. It is believed that the 
performance of future version can be increased through more 
careful optimization of the critical path. As for the highest 
performance requirement, multiple block coding engines can be 
used in parallel since every code-block can be coded 
independently. 

Fig. 9 Layout of the EBCOT block coding engine 

Table 2 List of memories used in the prototype chip 

Memory Size function 
1024x4 Magnitude Refinement State Variable 
1024x4 Final State Variable 
264x4 Significant State Variable (A) 
528x4 Significant State Variable (B) 
298x4 Significant State Variable (C) 
64x4 Group-Of-Column Skipping Method 

Table 3 Chip Specification 

Process Technology 0.35µm CMOS 1P4M 
Chip Size 3.67x3.67 mm2

Gate Count 19,000 gates + 13 kbit memory 
Clock Frequency 50 MHz (post-layout simulation) 
Supply Voltage 3.3V 
Power Consumption 115.49 mW 

5. CONCLUSIONS

The architecture design of DWT and EBCOT Tier-1 are 
discussed in this paper. EBCOT block coding engine, as the 
bottleneck of the JPEG2000 encoding, is analyzed in detail and 
highly optimized. The computation cycles required is reduced to 
40% of a straightforward implementation. It is a good accelerator 
for JPEG2000, and it is feasible to use multiple block coding 
engines to achieve the highest performance. As for DWT, a 
folded lifting based 1-D DWT core is proposed. The main 
considerations are to support both 5-3 and 9-7 filters. 

REFERENCES

[1] JPEG 2000 Part I Final Committee Draft Version 1.0, 
ISO/IEC JTC1/SC29/WG1 N1646R. 

[2] ISO/IEC, International Standard DIS 10918, Digital 
Compression and Coding of Continuous-Tone Still Images. 

[3] D. Taubman, “High Performance Scalable Image 
Compression With EBCOT,” Proc. of IEEE International 
Conference on Image Processing, Kobe, Japan, 1999, vol. 
3, pp. 344–348.

[4] Analog Devices, Inc., “ADV-JP2000, JPEG2000 Co-
processor,” Preliminary Technical Data, 16 May, 2001 

[5] W. Sweldens, “The Lifting Scheme: A Construction of 
Second Generation Wavelets,” Tech. Rep. 1995:6, 
Industrial Mathematics Initiative, Department of 
Mathematics, University of South Carolina, 1995, 
(ftp://ftp.math.sc.edu/pub/imi_95/imi95_6.ps).

[6] W. Sweldens, “The Lifting Scheme: A Custom-Design 
Construction of Biorthogonal Wavelets,” Appl. Comput. 
Harmon. Anal., vol. 3(2), pp. 186-200, 1996. 

[7] J. M. Jou, Y. H. Shiau, and C. C. Liu, “Efficient VLSI 
Architectures for the Biorthogonal Wavelet Transform by 
Filter Bank and Lifting Scheme,” IEEE International 
Symposium on Circuits and Systems (ISCAS’2001), pp. II-
529 - II-532, May 2001. 

[8] K. Andra, C. Chakrabarti and T. Acharya, “A VLSI 
Architecture for Lifting-Based Wavelet Transform,” The 
2000 IEEE Workshop on Signal Processing Systems (SiPS) 
Design and Implementation, pp.70-79, October 2000. 

[9] W. H. Chang, Y. S. Lee, W. S. Peng, and C. Y. Lee, “A
Line-Based, Memory Efficient and Programmable 
Architecture for 2D DWT using Lifting Scheme,” IEEE
2001 International Symposium on Circuits and Systems 
(ISCAS’2001), pp. IV-330 - IV-333, May 2001. 

[10] C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen, 
“Analysis and Architecture Design of Lifting Based DWT 
and EBCOT for JPEG 2000,” International Symposium on 
VLSI Technology, Systems, and Applications, Hsinchu 
Taiwan, pp. 180-183, April 2001. 

[11] C. Chrysafis and A. Ortega, “Line-Based, Reduced 
Memory, Wavelet Image Compression,” IEEE Trans. on 
Image Processing, Vol. 9, No. 3, pp.378-389, March 2000. 

[12] D. Taubman, “EBCOT: Embedded Block Coding with 
Optimized Truncation,” ISO/IEC JTC1/SC29/WG1 
N1020R. 

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

280

2001 IEEE International Conference on Multimedia and Expo  
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


