
Analysis and Architecture Design of JPEG2000
Liang-Gee Chen, Chung-Jr Lian, Kuan-Fu Chen, and Hong-Hui Chen

DSP/IC Design Lab., Department of Electrical Engineering,
National Taiwan University, Taipei 106, Taiwan, R.O.C.

E-mail: lgchen@video.ee.ntu.edu.tw

ABSTRACT

Analysis and architecture design of the key modules in
JPEG2000 are presented in this paper. For Discrete Wavelet
Transform (DWT), a lifting based DWT core for the default 5-3
and 9-7 filters in part I of JPEG2000 is proposed. Folded
architecture is adopted in DWT to reduce the hardware cost and
to achieve the higher hardware utilization. For Embedded Block
Coding with Optimized Truncation (EBCOT), column-based
coding architecture of Tier-1 block coding engine is proposed.
The context formation efficiency is increased by adopting two
speedup methods. The computation cycle of the block coding
engine is reduced to about 40% of previous work.

1. INTRODUCTION

JPEG2000 [1] is an emerging next-generation still image
compression standard. It is designed to provide not only better
compression performance than the existing JPEG standard [2],
but also new features and functionalities unavailable in JPEG.
The applications of JPEG2000 includes the digital still camera,
internet and wireless transmission. Different from JPEG,
JPEG2000 uses DWT as the transform coder, and EBCOT [3] as
the entropy coder. Fig. 1 compares the functional block diagram
of JPEG and JPEG2000. Wavelet transform is a subband
transform. It transfers the whole image, instead of 8x8 blocks in
JPEG, from spatial domain to frequency domain. To achieve
efficient lossy and lossless compression within a single coding
architecture, two wavelet transform kernels are supported in part
one of JPEG2000. The 5-3 reversible and 9-7 irreversible filters
are chosen for lossless and lossy compression, respectively. After
wavelet transform, the coefficients are scalar quantized if lossy
compression is chosen. Then, coefficients are entropy coded by
EBCOT. EBCOT is a two-Tier coder. Tier-1 is a context based
arithmetic encoder, and Tier-2 forms the bitstream according to
the rate-distortion information. Different from Huffman coding,
which can be implemented by table look-up, the implementation
complexity of the adaptive arithmetic coder is much higher. In
single pass JPEG coding, the compression ratio can not be
accurately controlled. In JPEG2000, EBCOT Tier-2 can reorder
the sub-bitstream segments contributed from each code-block
according to the rate-distortion optimization criteria, and generate
an JPEG2000 bit-stream with embedded characteristics.
Therefore, the compression ratio can be accurately controlled by
users, and the bitstream can be progressively decoded.

Since JPEG2000 is a brand-new standard, researchers are still
working hard to find the optimized design. Software companies
have provided their JPEG2000 codec, and kept promoting the
adoption of this new standard. As for the hardware design, ADV-
JP2000 [4] is claimed to be the first commercial chip to support
the JPEG2000 compression. It is designed to be a JPEG2000 co-
processor. DWT and EBCOT Tier-1 are implemented in this chip,
and EBCOT Tier-2 is executed on the host PC or extra processor.

Other researchers are trying another solutions such as DSP,
FPGA and ASIC implementations. As we can see in the run time
profile of JPEG 2000 in Table 1, EBCOT Tier-1 (context-based
arithmetic encoding) is the most time consuming module, and
DWT is the second one. In this paper, we mainly focus on the
analysis of DWT and EBCOT Tier-1, and then propose
architectures for these two parts.

The rest of this paper is organized as follows. In Section 2,
the algorithm of lifting based DWT and its architecture design
are discussed. In Section 3, the algorithm of EBCOT Tier-1 is
detailed analyzed, and speedup schemes for the context
formation are proposed. The experimental results and chip
implementation of EBCOT Tier-1 are depicted in Section 4.
Finally, a conclusion is given in Section 5.

DCT Quant
Huffman
Coding

Rate Control

DWT Quant
EBCOT
Tier-1

EBCOT
Tier-2

Transformation Quantization Entropy Coding

Rate Control

JPEG

JPEG2000

Fig. 1 Functional block diagrams: comparisons of JPEG
and JPEG2000 encoder.

Table 1 Run time profile of JPEG2000 encoder
(1,792x1,200 images, 5-level DWT, 9-7 filter, single layer,
profiling platform: PentiumIII-733, 128MB RAM, Visual
C++ and Windows ME)

Lossless Lossy Lossless Lossy
 Color Transform 0.91 14.12
 Wavelet Transform 10.81 26.38 11.9 23.97
 Quantization 6.42 5.04
 EBCOT Block Coding 71.63 52.26 69.29 43.85
 context formation 51.88 37.91 49.96 31.79
 arithmetic encoder 19.75 14.35 19.33 12.06
 EBCOT R-D Optimization 17.56 14.95 17.9 13.01
 layer formation 10 9.52 9.94 7.95
 marker insertion 7.56 5.43 7.96 5.06

Operation
Single Component 3 Components(RGB)

2. DISCRETE WAVELET TRANSFORM

2.1 Lifting-based Discrete Wavelet Transform

JPEG2000 is designed to support lossy and lossless
compression within the same coding framework. Therefore, a
compact architecture for both 5-3 and 9-7 filters is necessary.
Different from convolution based implementations, the newly
proposed lifting-scheme [5][6] for the computation of 5-3 and 9-
7 filters has lower computational complexity than the classical
one. There are some other significant features of lifting scheme.
First, lifting scheme allows in-place computation of the wavelet

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

277

2001 IEEE International Conference on Multimedia and Expo
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE

transform. The original signal can be replaced with the calculated
wavelet transform coefficient. Second, no explicit boundary
extension is needed. The symmetry mirroring is achieved by
adjusting some coefficients at proper boundary positions.

2.2 Architecture Design of DWT

More and more lifting-based DWT architectures are proposed
[7]-[9]. The basic processing unit for lifting scheme is shown in
Fig. 2. Using one basic processing unit for prediction and another
one for update forms one stage prediction and update functions.
For 5-3 filter, there is only one stage of prediction and update.
However, in 9-7 filter, there are two stages. In [9], for 5-3 filter,
the extra layer is bypassed by setting the redundant lifting
coefficients of extra layers to zero.

a

c

b

m

m

b + (a+c) x m

Fig. 2 Basic processing unit for lifting scheme

Another considerations are the input data rate. For low cost
considerations, the folded architecture, as shown in Fig. 3, is
proposed [10] under the assumption that only single read port
and write port memory is available, and only single-phase clock
signal is used for the system. Input data are read from memory
one by one. After serial to parallel conversion, data are processed
in pairs. The second stage of 9-7 filter operation is folded onto
the same hardware. Stage 1 and stage 2 operations are
interleaving. An extreme alternative is that the number of inputs
are equal to the width or length of the images. This idea can be
found in a RAM based implementation. There is always a trade-
off between area and speed. The architecture design of DWT
highly depends on the design of EBCOT since it is the bottleneck
of the JPEG2000 system. A word in DWT is just one datum, but
a N-bit datum becomes N data to be processed in EBCOT.

γ

α δ

β

delay
register

1/2

1/4

pipeline
register γα δβ filter

coefficients1/2 1/4

... X4 - X2 - X0

... X3 - X1 - -

Fig. 3 Proposed folded architecture for both 5-3 and 9-7
filters

As for the extension of 1-D DWT core to 2-D DWT, the
proposed 1-D DWT core can be used in the separable 2-D DWT
implementation, and the line based [11] data flow is a feasible
solution. The row and column filtering operations are
interleaving, and the column filtering operations are executed as
soon as possible. However, since EBCOT is not a line based
entropy coder, a buffer is always necessary for the line scan to
code-block scan conversion between DWT and EBCOT. The
buffer size will depend on the code-block size, more specifically,
the code-block height, and the maximum image width.

3. EBCOT TIER-1: BLOCK CODING

3.1 EBCOT Tier-1 Algorithm and Analysis

EBCOT is a two-tier coder. Tier-1 is an adaptive context-
based arithmetic encoder, and Tier-2 is for bitstream formation
according to the rate-distortion information from Tier-1. The
input to EBCOT Tier-1 is code-block by code-block. The data in
each code-block are arithmetic encoded to be a sub-bitstream.
This is the reason EBCOT Tier-1 is called a block coding engine.
The block coding engine can be viewed as two parts, Context
Formation (CF) and Arithmetic Encoder (AE). CF scans all bits
in code block in a specific order, and generates contexts for each
bit. AE encodes each bit according to contexts generated by CF.
The block coder is found to be the bottleneck of JPEG2000. The
reason comes from the fact that EBCOT process the data bit-by-
bit. The bit-level processing characteristics make it very
inefficient to be implemented on a general processor.

EBCOT encodes the quantized wavelet coefficients bitplane
by bitplane from MSB to LSB. The wavelet coefficients are
converted to sign-magnitude format after quantization. Due to the
consideration of compression performance, every bit-plane is
further decomposed into three passes. Each bit in a bit-plane is
encoded in one of the 3 passes, and the criterion is the expected
importance of this bit. Fig. 4 shows the decision flow. Pass 1 is
Significant Propagation Pass. Those bits having at least one
significant neighbor are coded in this pass. They are viewed as
more important bits, and are sent first. Pass 2 is Magnitude
Refinement Pass. All significant samples are coded in this pass.
The last pass is Clean Up Pass. Samples not coded in first two
passes are encoded in this one. At the beginning, the first bits of
all samples are always coded in pass 3. Once a sample becomes
significant, all the following bits of this sample will be coded in
pass 2. Another situation is that the sample itself has not been
significant yet, but at least one neighbor has been significant.
Then, this bit is to be coded in pass 1. After the sample itself
becomes significant, it is then coded in pass 2. Fig. 5 illustrated
the revolution map.

Check a bit of a pixel

is current pixel
significant ?

Coded in
pass 2

 have significant
neighbor(s)?

Coded in
pass 1

Coded in
pass 3

Yes

No

Yes

No

Fig. 4 Flow chart of the checking to determine in which
pass this bit should be coded

According to this algorithm and the statistical data shown in
Fig. 6, it can be found that the distribution is not uniform. At the
beginning, most bits in a bit-plane belong to pass 3. After coding
several bit-planes, more and more bits are coded in pass 2 since
samples become significant at later bit-planes as long as the
magnitude of this sample is not zero. The number of bits in pass
1 increases temporarily and then decrease. It is expected that the
bits to be coded in pass 2 in the earlier bit-planes and those in
pass 3 in later bit-planes are sparse. Since the arithmetic encoder
in the block coding engine is the bottleneck, the CF should
continuously feed data to AE in order to increase the throughput.
A sequential checking of every bit in a bit-plane in every pass

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

278

2001 IEEE International Conference on Multimedia and Expo
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE

will waste much time and have lots of “bubbles.” The worst case
is that every bit has to be checked for three times. Speedup
schemes are therefore necessary for the context formation.

����� �����

�����

���	
��

�
��
�
����

���	
��

�
��
�
����

��
���	����������

���	
���
��
�
����

Fig. 5 Revolution map of the bits in a sample

�

��

��

��

��

��

��

��

�������

�	
��
������

�������

����	
��

�����

�����

�����

Fig. 6 The distribution of number of bits coded in the 3
passes (A 8x8 LL subband from 256x256 Lena image)

3.2 Design of the Block Coding Engine

Column-based architecture for context formation is proposed
to check four bits in a column simultaneously. As for the
arithmetic encoder, pipeline and look-ahead scheme are adopted
to enhance the performance. Our strategy to speedup the block
coder is to reduce the time required to check the samples in
context formation. To achieve this, we have to keep processing
NBC (Need-to-Be-Coded) samples, and skip no-operation
samples.

The design of context formation is to support input data to
the arithmetic encoder as continuously as possible. Data are
supplied to the context formation processing elements (PEs) one
column (four bits) at a time. There are two advantages of
column-based operation. First, samples in a column can be
checked simultaneously, so speedup methods proposed can be
applied. Second, higher data reuse in significant and sign
variables is achieved. Memory access frequency of these
variables can therefore be reduced. Based on column-based
operation, the two speedup methods are described below.

1) Sample Skipping (SS): By column-based coding, samples
in a column can be parallel checked to see if they are Need-
to-Be-Coded (NBC) samples. NBC samples are processed
directly and sequentially, while no-operation bits are skipped.

2) Group-Of-Column Skipping (GOCS): In some bit-planes,
successive columns without any NBC bits are possible. To
further improve processing speed, these no-operation
columns should be skipped. Due to the significant
propagation in pass 1, we cannot decide whether one column
is a no-operation column before previous neighboring
column is coded. Therefore, columns in pass 1 have to check
one by one. After coding pass 1, all NBC columns of pass 2
and pass 3 are decided. By grouping some columns together,
this group of columns can be skipped if there is not any NBC
bits in it. According to the simulation, eight columns grouped
together has the better performance. A small overhead is the
memory needed for the storage of the GOC-skip-or-not

information for pass 2 and pass 3. For a 64 by 64 code-block,
the memory size is 256 bits for the two passes.

One extreme case is happened when there is not any NBC
bits in the whole pass. Once all the samples are significant, all
the following bits are to be coded in pass 2. Pass 1 an Pass 3 ,
therefore, contain zero bits. Another situation is that once there is
not any NBC bits in pass 3, the following bit-planes of pass 3
will no longer contain any bits. The idea can be implemented
using two flags to record the two kinds of status.

Context

Decision

Magnitude
Refinement

Memory
AG

GOCS
Memory

SS
Sample
Selector

P
as

s
C

on
tr

ol
le

r

4
C

od
in

g
P

E
s

Significant
Memories

Significant Register PE
(6x4 bit shift register)

12

7

Significant H,V,D

Final
Memory

Sign
Memories

Sign Register PE
(6x4 bit shift register)

12

4

H,V Contribution

Wavelet
Coefficient

Magnitude
Memory

Wavelet
Coefficient

4

4

4

Fig. 7 Context formation block diagram

The block diagram of Tier-1 context formation is shown in
Fig. 7. Quantized wavelet coefficients are loaded once a code-
block from Frame Memory into Code Block Memory. The sign
bit-plane is separated from the magnitude bit-planes. This code-
block memory is necessary since every samples have to be
accessed for many times. Contexts corresponding to every single
bit are generated, which are the information needed for the
adaptive arithmetic encoder. State Variable Memories are used
for storing three different kinds of state variables (for magnitude
refinement, final, and significant status) necessary for context
generation. State variables needed are then loaded into State
Variable Register, and are written back to State Variable
Memories whenever updated. Not only state variables
corresponding to the current coding sample, but also significant
situations (H, V, D) of neighboring columns sent to PEs. Sign
Magnitude Register works similar to State Variable Register
expect no update operation is needed. The four PEs
corresponding to the four coding primitives, Zero Coding, Run-
Length Coding, Sign Coding, and Magnitude Refinement Coding,
can generate contexts according to the state variables, sign and
magnitude. Three Pass Controllers are used to control the four
coding PEs.

4. EXPERIMENTAL RESULTS

Experiments of the block coding engine are made by
encoding various images on our proposed architecture and
Taubman’s [12] for comparison. The processing time of EBCOT
block coder is shown in Fig. 8. It is clear that the run time
performance improved dramatically. Under the circumstances
that only GOCS is applied, the processing time is reduced to 77%
compared with Taubman’s architecture. If only SS is applied,
process time is reduced to 45%. By using SS and GOCS together,
processing time can be further reduced to 40%. Through the

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

279

2001 IEEE International Conference on Multimedia and Expo
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE

simulation on various images, about 60% of improvement is
achieved in all cases when SS and GOCS are applied together.

149

Pass1 Pass2 Pass3

Taubman’s

SS

473 (100%)149 175

149 84 135 368 (77.8%)GOCS

81 53 79 213 (45.0%)

81 38 71 190 (40.2%)GOCS+SS
Clock Cycle Count

(x 10000)

Fig. 8 Performance comparisons (clock cycles required)

A prototype chip of the block coding engine is implemented
to verify the proposed speedup schemes. The specification of this
chip is shown in Table 3. Simulation results show that this block
coding engine can process 4.6 million pixels image within 1
second, corresponding to 2,400x1,800 image size, or 452x340
video sequence with 30 frames per second. It is believed that the
performance of future version can be increased through more
careful optimization of the critical path. As for the highest
performance requirement, multiple block coding engines can be
used in parallel since every code-block can be coded
independently.

Fig. 9 Layout of the EBCOT block coding engine

Table 2 List of memories used in the prototype chip

Memory Size function
1024x4 Magnitude Refinement State Variable
1024x4 Final State Variable
264x4 Significant State Variable (A)
528x4 Significant State Variable (B)
298x4 Significant State Variable (C)
64x4 Group-Of-Column Skipping Method

Table 3 Chip Specification

Process Technology 0.35µm CMOS 1P4M
Chip Size 3.67x3.67 mm2

Gate Count 19,000 gates + 13 kbit memory
Clock Frequency 50 MHz (post-layout simulation)
Supply Voltage 3.3V
Power Consumption 115.49 mW

5. CONCLUSIONS

The architecture design of DWT and EBCOT Tier-1 are
discussed in this paper. EBCOT block coding engine, as the
bottleneck of the JPEG2000 encoding, is analyzed in detail and
highly optimized. The computation cycles required is reduced to
40% of a straightforward implementation. It is a good accelerator
for JPEG2000, and it is feasible to use multiple block coding
engines to achieve the highest performance. As for DWT, a
folded lifting based 1-D DWT core is proposed. The main
considerations are to support both 5-3 and 9-7 filters.

REFERENCES

[1] JPEG 2000 Part I Final Committee Draft Version 1.0,
ISO/IEC JTC1/SC29/WG1 N1646R.

[2] ISO/IEC, International Standard DIS 10918, Digital
Compression and Coding of Continuous-Tone Still Images.

[3] D. Taubman, “High Performance Scalable Image
Compression With EBCOT,” Proc. of IEEE International
Conference on Image Processing, Kobe, Japan, 1999, vol.
3, pp. 344–348.

[4] Analog Devices, Inc., “ADV-JP2000, JPEG2000 Co-
processor,” Preliminary Technical Data, 16 May, 2001

[5] W. Sweldens, “The Lifting Scheme: A Construction of
Second Generation Wavelets,” Tech. Rep. 1995:6,
Industrial Mathematics Initiative, Department of
Mathematics, University of South Carolina, 1995,
(ftp://ftp.math.sc.edu/pub/imi_95/imi95_6.ps).

[6] W. Sweldens, “The Lifting Scheme: A Custom-Design
Construction of Biorthogonal Wavelets,” Appl. Comput.
Harmon. Anal., vol. 3(2), pp. 186-200, 1996.

[7] J. M. Jou, Y. H. Shiau, and C. C. Liu, “Efficient VLSI
Architectures for the Biorthogonal Wavelet Transform by
Filter Bank and Lifting Scheme,” IEEE International
Symposium on Circuits and Systems (ISCAS’2001), pp. II-
529 - II-532, May 2001.

[8] K. Andra, C. Chakrabarti and T. Acharya, “A VLSI
Architecture for Lifting-Based Wavelet Transform,” The
2000 IEEE Workshop on Signal Processing Systems (SiPS)
Design and Implementation, pp.70-79, October 2000.

[9] W. H. Chang, Y. S. Lee, W. S. Peng, and C. Y. Lee, “A
Line-Based, Memory Efficient and Programmable
Architecture for 2D DWT using Lifting Scheme,” IEEE
2001 International Symposium on Circuits and Systems
(ISCAS’2001), pp. IV-330 - IV-333, May 2001.

[10] C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen,
“Analysis and Architecture Design of Lifting Based DWT
and EBCOT for JPEG 2000,” International Symposium on
VLSI Technology, Systems, and Applications, Hsinchu
Taiwan, pp. 180-183, April 2001.

[11] C. Chrysafis and A. Ortega, “Line-Based, Reduced
Memory, Wavelet Image Compression,” IEEE Trans. on
Image Processing, Vol. 9, No. 3, pp.378-389, March 2000.

[12] D. Taubman, “EBCOT: Embedded Block Coding with
Optimized Truncation,” ISO/IEC JTC1/SC29/WG1
N1020R.

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

280

2001 IEEE International Conference on Multimedia and Expo
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

